This function generates a multi-panel plot, including (i) the observed coverage and gene model, (ii) the estimated transcript abundances and (iii) the observed and predicted junction coverages within the gene.

plotGeneSummary(gtf, junctionCovs, useGene, bwFile, txQuants,
  txCol = "transcript_id", geneCol = "gene_id", exonCol = "exon_id")

Arguments

gtf

Path to gtf file with genomic features. Preferably in Ensembl format.

junctionCovs

A data.frame with junction coverage information, output from calculateJCCScores.

useGene

A character string giving the name of the gene to plot.

bwFile

Path to a bigwig file generated from a genome alignment BAM file.

txQuants

A data.frame with estimated transcript abundances, output from combineCoverages.

txCol

The column in the gtf file that contains the transcript ID.

geneCol

The column in the gtf file that contains the gene ID.

exonCol

The column in the gtf file that contains the exon ID.

Value

A ggplot object with a multi-panel plot. The size is optimized for display in a device of size approximately 12in wide and 10in high.

References

Soneson C, Love MI, Patro R, Hussain S, Malhotra D, Robinson MD: A junction coverage compatibility score to quantify the reliability of transcript abundance estimates and annotation catalogs. bioRxiv doi:10.1101/378539 (2018)

Author

Charlotte Soneson

Examples

if (FALSE) { # \dontrun{
gtf <- system.file("extdata/Homo_sapiens.GRCh38.90.chr22.gtf.gz",
                   package = "jcc")
bam <- system.file("extdata/reads.chr22.bam", package = "jcc")
biasMod <- fitAlpineBiasModel(gtf = gtf, bam = bam,
                              organism = "Homo_sapiens",
                              genome = Hsapiens, genomeVersion = "GRCh38",
                              version = 90, minLength = 230,
                              maxLength = 7000, minCount = 10,
                              maxCount = 10000, subsample = TRUE,
                              nbrSubsample = 30, seed = 1, minSize = NULL,
                              maxSize = 220, verbose = TRUE)
tx2gene <- readRDS(system.file("extdata/tx2gene.sub.rds", package = "jcc"))
predCovProfiles <- predictTxCoverage(biasModel = biasMod$biasModel,
                                     exonsByTx = biasMod$exonsByTx,
                                     bam = bam, tx2gene = tx2gene,
                                     genome = Hsapiens,
                                     genes = c("ENSG00000070371",
                                               "ENSG00000093010"),
                                     nCores = 1, verbose = TRUE)
txQuants <- readRDS(system.file("extdata/quant.sub.rds", package = "jcc"))
txsc <- scaleTxCoverages(txCoverageProfiles = predCovProfiles,
                         txQuants = txQuants, tx2gene = tx2gene,
                         strandSpecific = TRUE, methodName = "Salmon",
                         verbose = TRUE)
jcov <- read.delim(system.file("extdata/sub.SJ.out.tab", package = "jcc"),
                   header = FALSE, as.is = TRUE) %>%
 setNames(c("seqnames", "start", "end", "strand", "motif", "annot",
           "uniqreads", "mmreads", "maxoverhang")) %>%
 dplyr::mutate(strand = replace(strand, strand == 1, "+")) %>%
 dplyr::mutate(strand = replace(strand, strand == 2, "-")) %>%
 dplyr::select(seqnames, start, end, strand, uniqreads, mmreads) %>%
 dplyr::mutate(seqnames = as.character(seqnames))
combCov <- combineCoverages(junctionCounts = jcov,
                            junctionPredCovs = txsc$junctionPredCovs,
                            txQuants = txsc$txQuants)
jcc <- calculateJCCScores(junctionCovs = combCov$junctionCovs,
                          geneQuants = combCov$geneQuants)
bwFile <- system.file("extdata/reads.chr22.bw", package = "jcc")
plotGeneSummary(gtf = gtf, junctionCovs = jcc$junctionCovs,
                useGene = "ENSG00000070371", bwFile = bwFile,
                txQuants = combCov$txQuants)
} # }