calculateJCCScores.Rd
This function calculates the scaled predicted junction coverage for each junction, and the JCC score for each gene.
calculateJCCScores(junctionCovs, geneQuants, mmFracThreshold = 0.25)
A list with two elements:
junctionCovs
:A data.frame
with predicted and
observed junction coverages.
geneScores
:A data.frame
with gene scores.
Soneson C, Love MI, Patro R, Hussain S, Malhotra D, Robinson MD: A junction coverage compatibility score to quantify the reliability of transcript abundance estimates and annotation catalogs. bioRxiv doi:10.1101/378539 (2018)
if (FALSE) { # \dontrun{
gtf <- system.file("extdata/Homo_sapiens.GRCh38.90.chr22.gtf.gz",
package = "jcc")
bam <- system.file("extdata/reads.chr22.bam", package = "jcc")
biasMod <- fitAlpineBiasModel(gtf = gtf, bam = bam,
organism = "Homo_sapiens",
genome = Hsapiens, genomeVersion = "GRCh38",
version = 90, minLength = 230,
maxLength = 7000, minCount = 10,
maxCount = 10000, subsample = TRUE,
nbrSubsample = 30, seed = 1, minSize = NULL,
maxSize = 220, verbose = TRUE)
tx2gene <- readRDS(system.file("extdata/tx2gene.sub.rds", package = "jcc"))
predCovProfiles <- predictTxCoverage(biasModel = biasMod$biasModel,
exonsByTx = biasMod$exonsByTx,
bam = bam, tx2gene = tx2gene,
genome = Hsapiens,
genes = c("ENSG00000070371",
"ENSG00000093010"),
nCores = 1, verbose = TRUE)
txQuants <- readRDS(system.file("extdata/quant.sub.rds", package = "jcc"))
txsc <- scaleTxCoverages(txCoverageProfiles = predCovProfiles,
txQuants = txQuants, tx2gene = tx2gene,
strandSpecific = TRUE, methodName = "Salmon",
verbose = TRUE)
jcov <- read.delim(system.file("extdata/sub.SJ.out.tab", package = "jcc"),
header = FALSE, as.is = TRUE) %>%
setNames(c("seqnames", "start", "end", "strand", "motif", "annot",
"uniqreads", "mmreads", "maxoverhang")) %>%
dplyr::mutate(strand = replace(strand, strand == 1, "+")) %>%
dplyr::mutate(strand = replace(strand, strand == 2, "-")) %>%
dplyr::select(seqnames, start, end, strand, uniqreads, mmreads) %>%
dplyr::mutate(seqnames = as.character(seqnames))
combCov <- combineCoverages(junctionCounts = jcov,
junctionPredCovs = txsc$junctionPredCovs,
txQuants = txsc$txQuants)
jcc <- calculateJCCScores(junctionCovs = combCov$junctionCovs,
geneQuants = combCov$geneQuants)
} # }