Skip to contents

Select branches in a tree meeting the specified criteria in terms of number of leaves and the count proportion. Note that only internal branch nodes are considered - no individual leaves will be returned.

Usage

selNode(
  pr = NULL,
  obj = NULL,
  assay = 1,
  data = NULL,
  tree = NULL,
  minTip = 0,
  maxTip = Inf,
  minPr = 0,
  maxPr = 1,
  skip = NULL,
  all = FALSE
)

Arguments

pr

A named numeric vector to provide proportions of entities. If this is provided, obj and data will be ignored.

obj

A TreeSummarizedExperiment object. Only used if pr is NULL.

assay

The index or name of the assay of obj to use for estimating node count proportions. Only used if obj is not NULL.

data

Either a count table with entities in rows and samples in columns, or a list with pi and theta estimates (the output of parEstimate). Only used if pr and obj are NULL.

tree

A phylo object. If obj is used as input, the tree will be extracted from the rowTree of obj.

minTip

the minimum number of leaves in the selected branch.

maxTip

The maximum number of leaves in the selected branch.

minPr

The minimum count proportion of the selected branch in a sample. A value between 0 and 1.

maxPr

The maximum count proportion of the selected branch in a sample. A value between 0 and 1.

skip

A character vector of node labels. These nodes can not be descendants or the ancestors of the selected branch.

all

A logical scalar. If FALSE (default), the branch node of a single branch, which meets the requirements and has the minimum count proportion of branches meeting the requirements, is returned; otherwise branch nodes of all branches meeting the requirements are returned.

Value

A data.frame with node information for the selected internal node(s).

Author

Ruizhu Huang, Charlotte Soneson

Examples

suppressPackageStartupMessages({
    library(TreeSummarizedExperiment)
})

## Generate example data
set.seed(1)
data(tinyTree)
toyTable <- matrix(rnbinom(40, size = 1, mu = 10), nrow = 10)
colnames(toyTable) <- paste(rep(LETTERS[seq_len(2)], each = 2),
                            rep(seq_len(2), 2), sep = "_")
rownames(toyTable) <- tinyTree$tip.label

## Estimate entity proportions from count matrix under a Dirichlet
## Multinomial framework, and use this as the input for selNode
dat <- parEstimate(obj = toyTable)
#> Iteration 1: Log-likelihood value: -633.210632859034
#> Iteration 2: Log-likelihood value: -631.489192200762
#> Iteration 3: Log-likelihood value: -631.155358434505
#> Iteration 4: Log-likelihood value: -631.132407245137
#> Iteration 5: Log-likelihood value: -631.132252461193
#> Iteration 6: Log-likelihood value: -631.132252452366
selNode(tree = tinyTree, data = dat, all = TRUE)
#>          nodeNum nodeLab proportion numTip
#> alias_11      11 Node_11  1.0000000     10
#> alias_12      12 Node_12  0.8644560      9
#> alias_13      13 Node_13  0.2148379      3
#> alias_14      14 Node_14  0.1488320      2
#> alias_15      15 Node_15  0.6496181      6
#> alias_16      16 Node_16  0.5177530      5
#> alias_17      17 Node_17  0.3484034      3
#> alias_18      18 Node_18  0.1716573      2
#> alias_19      19 Node_19  0.1693496      2
selNode(tree = tinyTree, data = dat,
        minTip = 4, maxTip = 9, minPr = 0, maxPr = 0.8, all = TRUE)
#>          nodeNum nodeLab proportion numTip
#> alias_15      15 Node_15  0.6496181      6
#> alias_16      16 Node_16  0.5177530      5

## Alternatively, directly provide the proportions vector
selNode(tree = tinyTree, pr = dat$pi, all = TRUE)
#>          nodeNum nodeLab proportion numTip
#> alias_11      11 Node_11  1.0000000     10
#> alias_12      12 Node_12  0.8644560      9
#> alias_13      13 Node_13  0.2148379      3
#> alias_14      14 Node_14  0.1488320      2
#> alias_15      15 Node_15  0.6496181      6
#> alias_16      16 Node_16  0.5177530      5
#> alias_17      17 Node_17  0.3484034      3
#> alias_18      18 Node_18  0.1716573      2
#> alias_19      19 Node_19  0.1693496      2

## Return only branch with lowest proportion among valid ones
selNode(tree = tinyTree, pr = dat$pi, all = FALSE)
#>          nodeNum nodeLab proportion numTip
#> alias_14      14 Node_14   0.148832      2

## Start instead from a TreeSummarizedExperiment object
lse <- TreeSummarizedExperiment(rowTree = tinyTree,
                                assays = list(counts = toyTable))
selNode(obj = lse, assay = "counts", all = TRUE)
#> Iteration 1: Log-likelihood value: -633.210632859034
#> Iteration 2: Log-likelihood value: -631.489192200762
#> Iteration 3: Log-likelihood value: -631.155358434505
#> Iteration 4: Log-likelihood value: -631.132407245137
#> Iteration 5: Log-likelihood value: -631.132252461193
#> Iteration 6: Log-likelihood value: -631.132252452366
#>          nodeNum nodeLab proportion numTip
#> alias_11      11 Node_11  1.0000000     10
#> alias_12      12 Node_12  0.8644560      9
#> alias_13      13 Node_13  0.2148379      3
#> alias_14      14 Node_14  0.1488320      2
#> alias_15      15 Node_15  0.6496181      6
#> alias_16      16 Node_16  0.5177530      5
#> alias_17      17 Node_17  0.3484034      3
#> alias_18      18 Node_18  0.1716573      2
#> alias_19      19 Node_19  0.1693496      2

## Don't allow node 1 to be included
selNode(obj = lse, assay = "counts", skip = 1, all = TRUE)
#> Iteration 1: Log-likelihood value: -633.210632859034
#> Iteration 2: Log-likelihood value: -631.489192200762
#> Iteration 3: Log-likelihood value: -631.155358434505
#> Iteration 4: Log-likelihood value: -631.132407245137
#> Iteration 5: Log-likelihood value: -631.132252461193
#> Iteration 6: Log-likelihood value: -631.132252452366
#>          nodeNum nodeLab proportion numTip
#> alias_14      14 Node_14  0.1488320      2
#> alias_15      15 Node_15  0.6496181      6
#> alias_16      16 Node_16  0.5177530      5
#> alias_17      17 Node_17  0.3484034      3
#> alias_18      18 Node_18  0.1716573      2
#> alias_19      19 Node_19  0.1693496      2