parEstimate
is a wrapper of the function
dirmult
with default settings for init
,
initscalar
, epsilon
, trace
and mode
. It allows
the input obj
to be either a matrix
or a
TreeSummarizedExperiment
and outputs the estimated values of
pi
and theta
.
Value
A list including the estimates of pi
(a vector with one
element per row in obj
) and theta
(a scalar).
Examples
suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
})
set.seed(1L)
y <- matrix(rnbinom(200, size = 1, mu = 10), nrow = 10)
colnames(y) <- paste("S", seq_len(20), sep = "")
rownames(y) <- tinyTree$tip.label
toy_tse <- TreeSummarizedExperiment(rowTree = tinyTree,
assays = list(y))
res <- parEstimate(obj = toy_tse)
#> Iteration 1: Log-likelihood value: -3707.79061811115
#> Iteration 2: Log-likelihood value: -3705.14216240896
#> Iteration 3: Log-likelihood value: -3704.92754722943
#> Iteration 4: Log-likelihood value: -3704.92506122156
#> Iteration 5: Log-likelihood value: -3704.92506080308
metadata(res)$assays.par
#> $pi
#> t2 t7 t6 t9 t4 t8 t10
#> 0.10811579 0.06185462 0.10655326 0.09701295 0.12987201 0.10127906 0.09596747
#> t1 t5 t3
#> 0.08350587 0.10676714 0.10907184
#>
#> $theta
#> [1] 0.1016139
#>