Skip to contents

Extract information about candidates.

Usage

infoCand(object)

Arguments

object

An output object from evalCand.

Value

A data.frame with information about candidates.

Author

Ruizhu Huang

Examples

suppressPackageStartupMessages({
    library(TreeSummarizedExperiment)
    library(ggtree)
})

## Simulate some data
data(tinyTree)
ggtree(tinyTree, branch.length = "none") +
   geom_text2(aes(label = node)) +
   geom_hilight(node = 13, fill = "blue", alpha = 0.3) +
   geom_hilight(node = 18, fill = "orange", alpha = 0.3)

set.seed(1)
pv <- runif(19, 0, 1)
pv[c(seq_len(5), 13, 14, 18)] <- runif(8, 0, 0.001)

fc <- sample(c(-1, 1), 19, replace = TRUE)
fc[c(seq_len(3), 13, 14)] <- 1
fc[c(4, 5, 18)] <- -1
df <- data.frame(node = seq_len(19),
                 pvalue = pv,
                 logFoldChange = fc)

## Get candidates
ll <- getCand(tree = tinyTree, score_data = df,
               node_column = "node",
               p_column = "pvalue",
               sign_column = "logFoldChange")

## Evaluate candidates
cc <- evalCand(tree = tinyTree, levels = ll$candidate_list,
               score_data = df, node_column = "node",
               p_column = "pvalue", sign_column = "logFoldChange",
               limit_rej = 0.05)

## Get summary info about candidates
out <- infoCand(object = cc)
out
#>       t    upper_t is_valid method limit_rej level_name  best rej_leaf rej_node
#> 1  0.00 0.06666667     TRUE     BH      0.05          0 FALSE        5        5
#> 2  0.01 0.15000000     TRUE     BH      0.05       0.01  TRUE        5        2
#> 3  0.02 0.15000000     TRUE     BH      0.05       0.02  TRUE        5        2
#> 4  0.03 0.15000000     TRUE     BH      0.05       0.03  TRUE        5        2
#> 5  0.04 0.15000000     TRUE     BH      0.05       0.04  TRUE        5        2
#> 6  0.05 0.15000000     TRUE     BH      0.05       0.05  TRUE        5        2
#> 7  0.10 0.15000000     TRUE     BH      0.05        0.1  TRUE        5        2
#> 8  0.15 0.15000000    FALSE     BH      0.05       0.15 FALSE        5        2
#> 9  0.20 0.15000000    FALSE     BH      0.05        0.2 FALSE        5        2
#> 10 0.25 0.15000000    FALSE     BH      0.05       0.25 FALSE        5        2
#> 11 0.30 0.15000000    FALSE     BH      0.05        0.3 FALSE        5        2
#> 12 0.35 0.15000000    FALSE     BH      0.05       0.35 FALSE        5        2
#> 13 0.40 0.15000000    FALSE     BH      0.05        0.4 FALSE        5        2
#> 14 0.45 0.15000000    FALSE     BH      0.05       0.45 FALSE        5        2
#> 15 0.50 0.15000000    FALSE     BH      0.05        0.5 FALSE        5        2
#> 16 0.55 0.15000000    FALSE     BH      0.05       0.55 FALSE        5        2
#> 17 0.60 0.15000000    FALSE     BH      0.05        0.6 FALSE        5        2
#> 18 0.65 0.15000000    FALSE     BH      0.05       0.65 FALSE        5        2
#> 19 0.70 0.15000000    FALSE     BH      0.05        0.7 FALSE        5        2
#> 20 0.75 0.15000000    FALSE     BH      0.05       0.75 FALSE        5        2
#> 21 0.80 0.15000000    FALSE     BH      0.05        0.8 FALSE        5        2
#> 22 0.85 0.15000000    FALSE     BH      0.05       0.85 FALSE        5        2
#> 23 0.90 0.15000000    FALSE     BH      0.05        0.9 FALSE        5        2
#> 24 0.95 0.15000000    FALSE     BH      0.05       0.95 FALSE        5        2
#> 25 1.00 0.15000000    FALSE     BH      0.05          1 FALSE        5        2