Extract a table with the top-ranked nodes from a DA/DS analysis output
(generated by runDA
or runDS
).
Usage
nodeResult(
object,
n = 10,
type = c("DA", "DS"),
adjust_method = "BH",
sort_by = "PValue",
p_value = 1
)
Arguments
- object
- n
An integer indicating the maximum number of entities to return.
- type
Either "DA" (for object from
runDA
) or "DS" (for object fromrunDS
).- adjust_method
A character string specifying the method used to adjust p-values for multiple testing. See
p.adjust
for possible values.- sort_by
A character string specifying the sorting method. This will be passed to
topTags
. Possibilities are "PValue" for p-value, "logFC" for absolute log-fold change or "none" for no sorting.- p_value
A numeric cutoff value for adjusted p-values. This will be passed to
topTags
. Only entities with adjusted p-values equal or lower than specified are returned.
Value
A data frame with results for all nodes passing the imposed
thresholds. The columns logFC, logCPM,
PValue, FDR, F (or LR) are from (the
output table of) topTags
. The node column
stores the node number for each entity. Note: FDR is corrected
over all features and nodes when the specified type = "DS"
.
Examples
suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
})
lse <- readRDS(system.file("extdata", "da_sim_100_30_18de.rds",
package = "treeclimbR"))
tse <- aggTSE(lse, rowLevel = showNode(tree = rowTree(lse),
only.leaf = FALSE))
dd <- model.matrix( ~ group, data = colData(tse))
out <- runDA(TSE = tse, feature_on_row = TRUE,
assay = "counts", option = "glmQL",
design = dd, contrast = NULL,
normalize = TRUE)
## Top 10 nodes with DA
nodeResult(out, n = 10)
#> node logFC logCPM F PValue FDR
#> alias_102 102 -0.6705290 18.47290 230.62639 2.678458e-20 2.437397e-18
#> alias_114 114 -0.6163689 17.74557 135.13694 8.811263e-16 4.009125e-14
#> alias_115 115 -0.6363130 17.40596 123.69769 4.358763e-15 1.322158e-13
#> alias_103 103 -0.7518593 17.17217 111.02252 2.917194e-14 6.636616e-13
#> alias_116 116 -0.7204688 16.78934 80.55771 5.687821e-12 1.035183e-10
#> alias_118 118 -0.6862085 16.51284 70.69389 4.122989e-11 6.253200e-10
#> alias_110 110 -0.8660080 16.18212 63.34200 2.017616e-10 2.622901e-09
#> alias_101 101 -0.1639281 19.93063 60.93639 3.464554e-10 3.940930e-09
#> alias_112 112 -0.8746829 15.41939 46.04094 1.346554e-08 1.361515e-07
#> alias_120 120 -0.8760397 15.82848 36.61330 1.868507e-07 1.619724e-06